Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages
نویسندگان
چکیده
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylcer-amide macrophages, the accumulation of glucosylceramide in lysosomes and the secretion of inflammatory cytokines. However, the connection between this lysosomal storage and inflammation is not clear. Studying macrophages derived from peripheral monocytes from patients with type 1 Gaucher disease with genotype N370S/N370S, we confirmed an increased secretion of interleukins IL-1β and IL-6. In addition, we found that activation of the inflammasome, a multiprotein complex that activates caspase-1, led to the maturation of IL-1β in Gaucher macrophages. We show that inflammasome activation in these cells is the result of impaired autophagy. Treatment with the small-molecule glucocerebrosidase chaperone NCGC758 reversed these defects, inducing autophagy and reducing IL-1β secretion, confirming the role of the deficiency of lysosomal glucocerebrosidase in these processes. We found that in Gaucher macrophages elevated levels of the autophagic adaptor p62 prevented the delivery of inflammasomes to autophagosomes. This increase in p62 led to activation of p65-NF-kB in the nucleus, promoting the expression of inflammatory cytokines and the secretion of IL-1β. This newly elucidated mechanism ties lysosomal dysfunction to inflammasome activation, and may contribute to the massive organomegaly, bone involvement and increased susceptibility to certain malignancies seen in Gaucher disease. Moreover, this link between lysosomal storage, impaired autophagy, and inflammation may have implications relevant to both Parkinson disease and the aging process. Defects in these basic cellular processes may also provide new therapeutic targets.
منابع مشابه
Coenzyme Q10 partially restores pathological alterations in a macrophage model of Gaucher disease
BACKGROUND Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mi...
متن کاملDefective quality control mechanisms and accumulation of damaged mitochondria link Gaucher and Parkinson diseases.
Mutations in the GBA gene encoding glucocerebrosidase cause Gaucher disease (GD), the most prevalent of the lysosomal storage disorders (LSDs) and increase susceptibility to Parkinson disease (PD). Clinically the two disorders can present in a similar manner with analogous pathological features, suggesting mechanistic links between the two disease states. An increasing body of evidence implicat...
متن کاملReport of Four Children with Gaucher Disease and Review of Literature
Gaucher Disease (GD) is the most common type of Lysosomal Storage Disorder and it is divided into three distinct subtypes. The authors here report four different cases of Gaucher Disease, with varying clinical manifestations, and the diagnosis of each established by the low level of Beta-Glucosidase enzyme as well as genetic DNA testing. The study also highlights the importance of early diagnos...
متن کاملThe emerging role of autophagic-lysosomal dysfunction in Gaucher disease and Parkinson's disease
Gaucher disease (GD), the commonest lysosomal storage disorder, results from the lack or functional deficiency of glucocerebrosidase (GCase) secondary to mutations in the GBA1 gene. There is an established association between GBA1 mutations and Parkinson's disease (PD), and indeed GBA1 mutations are now considered to be the greatest genetic risk factor for PD. Impaired lysosomal-autophagic degr...
متن کاملMitochondria and Quality Control Defects in a Mouse Model of Gaucher Disease—Links to Parkinson’s Disease
Mutations in the glucocerebrosidase (gba) gene cause Gaucher disease (GD), the most common lysosomal storage disorder, and increase susceptibility to Parkinson's disease (PD). While the clinical and pathological features of idiopathic PD and PD related to gba (PD-GBA) mutations are very similar, cellular mechanisms underlying neurodegeneration in each are unclear. Using a mouse model of neurono...
متن کامل